
M1. (a) dimethylamine

(b) nucleophilic substitution

(c) quaternary ammonium salt

(cationic) surfactant / bactericide / detergent / fabric softener or conditioner/hair conditioner

(d)

(allow CH₃COOH or CH₃COO- NH₄-)

[10]

1

1

1

1

2

M2. X is CH₃CN or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile

Not ethanitrile

but contradiciton of name and structure lose marks

Y is CH₃CH₂NH₂ or ethylamine or aminoethane or ethanamine

1

1

Step 1: reagent KCN not HCN/HCl condition (aq)/alcohol - only allow condition if reagent correct or incomplete

2

Step 2: reagent H₂ LiAlH₄ Na Zn/Fe/Sn Not NaBH₄ condition Ni/Pt/Pd ether ethanol HCl

2

Z is an amine or aminoalkane or named amine even if incorrect name for **Z** secondary (only award if amine correct)

1

1

1

(Br-) + can be on N or outside brackets as shown

nucleophilic substitution

[9]

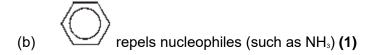
M3. (a)

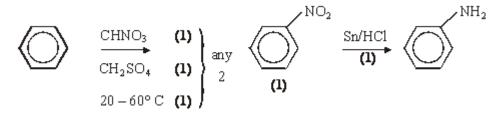
$$CH_3CH_2 \xrightarrow{\text{Br}} M2$$

$$CH_3CH_2 \xrightarrow{+} H$$

$$CH_3CH_2 \xrightarrow{+} H$$

$$CH_3CH_2 \xrightarrow{+} H$$


$$M4$$


$$M3$$

$$M1$$

Further reaction / substitution / formation of 2° / 3° amines etc (1) use an excess of NH₃ (1)

6

5

Notes

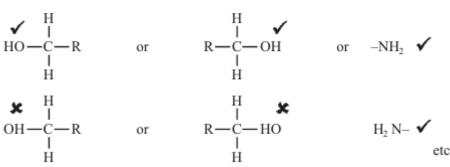
- (a) allow $S_{N}1$ penalise: Br intead of NH₃ removing H for M4 not contamination with *other amines* (this is in the question) not diamines
- (b) allow because NH₃ is a nuclephile or benzene is (only) attacked by electrophiles or C–Br bond (in bromobenzene) is stronger / less polar or Br lp delocalized

HNO₃ / H₂SO₄ without either conc scores (1) allow 20 – 60° for (1) (any 2 ex 3)

allow name or structure of nitrobenzene

other reducing agents: Fe or Sn with HCl (conc or dil or neither) not conc H₂SO₄ or conc HNO₃ allow Ni/H₂
Not NaBH₄ or LiAlH₄

ignore wrong descriptions for reduction step e.g. hydrolysis or hydration


[11]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) Structures

penalise sticks (i.e. |) once per paper

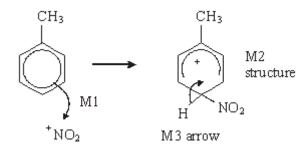
Penalise once per paper

$$\begin{array}{ccc} \underline{\text{allow}} & \text{CH}_3 - \text{or } -\text{CH}_3 \text{ or } & \text{H}_3 \\ \text{or } & \text{H}_3\text{C} - & \text{H}_3 \end{array}$$

M4. (a) (i) conc HNO_3

conc H₂SO₄

allow 1 for both acids if either conc missing


HNO $_3$ + 2H $_2$ SO $_4$ \rightarrow NO $_2^+$ + H $_3$ O $^+$ + 2HSO $_4^-$ or HNO $_3$ + H $_2$ SO $_4$ \rightarrow NO $_2^+$ + H $_2$ O + HSO $_4^-$

(iii) electrophilic substitution CH₃

1

1

1

horseshoe must not extend beyond C2 to C6 but can be smaller + must not be too close to Cl

3

1

[15]

- (b) Sn or Fe / HCl (conc or dil or neither) or Ni / H₂ not NaBH₄ LiAlH₄
- (c) (i) NH_3

Use an excess of ammonia

- (ii) nucleophilic substitution

M5. (a) Nucleophilic substitution

M1, M2 and M4 for arrows, M3 for structure of cation

(Allow M2 alone first, i.e. SN1 formation of carbocation)

Page 6

(Penalise M4 if Br used to remove H)

				4	
(b)	Step	o 1	CH ₃ CH ₂ CH ₂ CN 1		
	CH₃CH₂CH₂Br + KCN → CH₃CH₂CH₂CN + KBr balanced			1	
			(or CN-) (or Br-) (not HCN)	1	
	Step	2	$CH_3CH_2CH_2CN + 2H_2 \rightarrow CH_3CH_2CH_2CH_2NH_2$ (or 4[H])	1	
(c)	(i)		Lone pair (on N) (in correct context)	1	
		R group increases electron density / donates electrons /pushes electrons / has positive inductive effect	1		
	(ii)		strong acid (but not concentrated) ny amine salt or ammonium salt of a strong acid	1	
(d)	CH ₃ CH ₂ N(CH ₃) ₂			1	[12]